Integrated Formal Approach
for a Qualified Critical Code Generator

N. Izerrouken'*(nizerrou@N?7.fr), M. Pantel®, X. Thirioux* and O. Ssi Yan Kai'

'Continental Automotive, Innovation Center, Toulouse, France
?Institut de Recherche en Informatique de Toulouse, Institut National Polytechnique de Toulouse, France

Problem Statement

/- Code generators reduce development time and
verification costs (compliance of source code

w.r.t. model-based design) Source code

e g FC8
4g HLS g !
) __c'_'_fcom
Ubsystem_Gaind ﬁ
Subdystem SecondBubgytem y

AT
k

. 'z

 Industry is aware that critical systems require M NN
more rigorous verification than classical testing |
=> formal specification & verifiaction i o /

» Formal verification of: / Verlflcatlon \
* Input model
 Generated source code Are they

n ?
« Compliance generated code/model HENELOT
ﬁ Source Code

« Complex analysis of verification failures
=> Verification of the Code generator itself Code

\ Generator /

Context: GeneAuto

 GeneAuto : Automatic code Generator for critical embedded systems dedicated to
transportation domain.
 GeneAuto is split into elementary tools

» Easier to specify, verify and validate

« Several implementations can be provided
[Preprocessor]
Simulink/ @ %7

Stateflow @ ®

models
|:> Block Sequencer |:> Code Model
Generator

Stateflow
GA System model GA COde Model
I 2 R
/ | Ada code ? N
Printer || B

Scicos GeneAuto Default Library \ L inter T

—_— i
m Aw
Users Library

~

GA Code Model

Simulink

importer

GA System model

models

B Main goals
* Reduction of industrial unit testing costs
* Qualification of GeneAuto using DO178B/ED-12B recommendations
* Pragmatic integration of formal technologies into develpment tools for safety critical

. systems /

Development Process

4 N

Choices

« Specification, verification and validation using the Coq proof assistant

* Integration of the formal elementary tools to the GeneAuto tool chain

* Qualification of the development process of GeneAuto containing classical Java and
\formal elementary tools (Coq/OCaml)

AN

For each elementary tool

* Translation of user/tool requirements from natural to formal language

(complex task, human proof reading)

« Formal specification of the tool requirements and design

 Formal verification of specified properties (correctness of Block Sequencer,Typer, etc.)

. /

GeneAuto workflow
Requirements

Definition of User Requirements

Requirements

Java Development
Development of Case Study Formal Methods Research

Case
Soft. quality requirements

studies Soft. tool set
Validation of User Needs Qualification of GeneAuto

Translated

Case studies Requirements

Results

cccccccccc

Integration of Formal Methods

- Each elementary tool ff]"gtts
* is developed and verified in Coq;

e is verified and extracted in OCami:
extracted code preserves the
properties proved in Coq.

Elementary
tool

Inputsl

Formal - N
Specification o &
0 <
g Q)
e Java front-end Automatic | 0€aml = T
. : = o
* reads input XML models; Extraction | o |3 =1
Theorem Prover oae 5 ;
» executes extracted Ocaml o — N, o
Wrapper; B o

. writes output XML models. U /

Design Outputs J Log\

& proof

 Ocaml Wrapper

* reads input models; XML
« executes the extracted OCaml Outputs
code (sequencer, typer, etc.);

» writes the output result (execution
order, types, etc.).

Qualification Concerns

Example of translation of requirements
 From natural language

F6.1 Sort blocks based on data-flow constraints.
F6.3 Sort blocks with partial ordering according to priority from the input
model.

F6.4 Sort blocks that are still partially ordered according to their graphical
position in the input model.

 To Coqg language

Definition correct execution order dataflow
(m : ModelType) (s : SequencedModelType) : Prop :=
forall (d : nat), (0 < d) /\ (d <= m.signalsNumber) ->
((s.signalKind = DataSignal) =->
(- (isControlled s.src m)) ->
(- (isControlled s.dst m)) ->
(s.dst.blockKind = CombinatorialBlock) ->
(s.src.blockKind = CombinatorialBlock) ->
((s.sequencedBlocks d.src) = (Position)) ->
((s.sequencedBlocks d.dst) = (Position)) =->
let (Position posSrc) = (s.sequencedBlocks d.src) in
let (Position posDst) = (s.sequencedBlocks d.dst) in
posSrc < posDst.

Qualification process
« Qualification of the development process of Java components
* Detailed documented development process using DO178B/ED-12B
 Validation process done through testing and cross-reading
* Qualification of the formal elementary tools
* Coq proof checker partially verified
« Coq extractor generates Ocaml code structurally similar to Coq specification

« Removal of unit & integration test phase from the formally developed elemen-
tary tools in DO178B/ED-12B

Main Results

* Mixing classical and formal development
* Development of correct-by-construction components
 ~4500 lines of Coq code and more than 130 proved theorems for the Block
Sequencer
* Block Sequencer case study successfully integrated into GeneAuto
» Application to Real-size systems from transportation domains

Case Satellite Orbit|“Knock™ reduction| Airpline Flight | Satellite Agile | Sensor
Study Control Software Control System |Control System|Networks

Model blocks 1085 5793 2800 1931 1108
Depth 5 9 7 6 7

 Runtime cost is comparable with similar tools (eg. Mathworks RTW)
e Qualification of the development process

» Classical development

 Formal components (Block Sequencer case study)

mailto:nizerrou@N7.fr
mailto:nizerrou@N7.fr

	Slide 1

