Towards Trustworthy Aerospace Systems: An Experience Report

Joost-Pieter Katoen

Software Modeling and Verification Group RWTH Aachen University

Invited Talk at Formal Methods in Industrial Critical Systems (FMICS'11)

joint work with Marco Bozzano, Alessandro Cimatti, Viet Yen Nguyen, Thomas Noll, Xavier Olivé, Marco Roveri and Yuri Yushstein

Agenda

2 System Specification

- Behavioural Modeling
- Formal Semantics
- Error Modelling
- Property Specification
- 3 Analysis Facilities
- Industrial Evaluation
- 5 Conclusions and Outlook

Overview

System Specification

- Behavioural Modeling
- Formal Semantics
- Error Modelling
- Property Specification
- 3 Analysis Facilities
- Industrial Evaluation

5 Conclusions and Outlook

Weather satellite

Weather satellite

Ariane 5

Weather satellite

Ariane 5

Space station ISS

Weather satellite

Ariane 5

Space station ISS

Mars Pathfinder

Weather satellite

Ariane 5

Space station ISS

Mars Pathfinder

GPS system with 26 satellites

Weather satellite

Ariane 5

Space station ISS

Mars Pathfinder

GPS system with 26 satellites

A Lego starwars ship

Extreme dependability!

- They must offer service without interruption for a very long time typically years or decades.
- 'Five nines' dependability is not sufficient.
- Faults are costly and may severely damage reputations, e.g. Ariane 5.

Extreme dependability!

- They must offer service without interruption for a very long time typically years or decades.
- 'Five nines' dependability is not sufficient.
- Faults are costly and may severely damage reputations, e.g. Ariane 5.

Challenges

- ▶ Rigorous design support and analysis techniques are called for.
- Bugs must be found as early as possible in the design process.
- Check performance and reliability guarantees whenever possible.
- The effect of Fault Diagnosis, Isolation and Recovery (FDIR) measures must be quantifiable.

Software is mostly verified in isolation from the target hardware.

¹Fault Detection, Identification and Recovery

Software is mostly verified in isolation from the target hardware.

Limited support for modeling fault models and degraded modes of operation.

¹Fault Detection, Identification and Recovery

Software is mostly verified in isolation from the target hardware.

Limited support for modeling fault models and degraded modes of operation.

Distinct modeling formalisms and analysis techniques for different system aspects.

¹Fault Detection, Identification and Recovery

Software is mostly verified in isolation from the target hardware.

Limited support for modeling fault models and degraded modes of operation.

Distinct modeling formalisms and analysis techniques for different system aspects.

Limited support for checking timed, hybrid, and probabilistic properties.

¹Fault Detection, Identification and Recovery

Software is mostly verified in isolation from the target hardware.

Limited support for modeling fault models and degraded modes of operation.

Distinct modeling formalisms and analysis techniques for different system aspects.

Limited support for checking timed, hybrid, and probabilistic properties.

No coherent approach to study effectiveness of FDIR ¹

¹Fault Detection, Identification and Recovery

Joost-Pieter Katoen

Our objective

Develop an integrated system-software co-engineering approach to ensure completeness and consistency from heterogeneous specification and analysis techniques.

Our objective

Develop an integrated system-software co-engineering approach to ensure completeness and consistency from heterogeneous specification and analysis techniques.

Main ingredients should be a general-purpose modelling language, accompanied with a plethora of formal analysis techniques and supported by powerful software tools.

Our objective

Develop an integrated system-software co-engineering approach to ensure completeness and consistency from heterogeneous specification and analysis techniques.

Main ingredients should be a general-purpose modelling language, accompanied with a plethora of formal analysis techniques and supported by powerful software tools.

Current situation

Yes, "formal methods" are applied to aerospace systems, but not in a coherent manner at the systems engineering level.

COMPASS project partners

Consortium

- RWTH Aachen University Software Modeling and Verification Group
- Fondazione Bruno Kessler
 Embedded Systems Group
- Thales Alenia Space
 World-wide #1 in satellite systems

Financial support + supervisor

Design a modeling language based on (core) AADL and its Error Annex.

Design a modeling language based on (core) AADL and its Error Annex.

Equip this modeling language with a formal semantics.

Design a modeling language based on (core) AADL and its Error Annex.

Equip this modeling language with a formal semantics.

Use specification patterns to ease the specification of system properties.

Design a modeling language based on (core) AADL and its Error Annex.

Equip this modeling language with a formal semantics.

Use specification patterns to ease the specification of system properties.

Support the system-engineering language by powerful model-checking tools for correctness, safety, performance and dependability analysis

Design a modeling language based on (core) AADL and its Error Annex.

Equip this modeling language with a formal semantics.

Use specification patterns to ease the specification of system properties.

Support the system-engineering language by powerful model-checking tools for correctness, safety, performance and dependability analysis

Evaluate their effectiveness by industrial case studies.

COMPASS phases

- Project kick-off
- Language design
- 3. Software tool specification + software design document
- 4 Formal semantics 5. Prototype tool implementation April 2009 6. Prototype evaluation
- 7. Final tool implementation
 - Final tool evaluation
 - Project extension
- 10. New projects (NPI, CGM)

February 2008

October 2008

December 2009

March 2010

until March 2011

until December 2011

COMPASS phases

1.	Project	kick-off
----	---------	----------

- 2. Language design
- 3. Software tool specification + software design document

4. Formal semanticsOcto5. Prototype tool implementationA

6. Prototype evaluation

7. Final tool implementation

- 8. Final tool evaluation
- 9. Project extension
- 10. New projects (NPI, CGM)

February 2008

October 2008

April 2009

December 2009

March 2010

until March 2011

until December 2011

Total budget: \approx 750 kEuro; at peak times \approx 10 programmers involved

Methodology

Overview

2 System Specification

- Behavioural Modeling
- Formal Semantics
- Error Modelling
- Property Specification

3 Analysis Facilities

Industrial Evaluation

5 Conclusions and Outlook

The industry standard AADL

Paradigm

• **1989** MetaH

• **1998** SAE AS-2C

- Architecture-based and model-driven top-down and bottom-up engineering
- Real-time and performance critical distributed systems
- Complements component-based product-line development

- 2004 AADL 1.0
- 2006 Error Annex 1.0
- 2009 AADL 2.0 • 2010 Error Annex 2.0

AADL example: redundant power system

Redundant power system

- Contains two batteries
- Power switches from primary to backup mode (and back) when batt1 (batt2) is empty

We shall show:

- hybrid behaviour of the batteries
- composition of the power system
- formalisation to automata
- semantics as transition systems
- interweaving of errors

Modelling a battery in AADL

Component type and implementation:

device type Battery

end Battery; device implementation Battery.Imp

end Battery.Imp;

Modelling a battery in AADL

```
Type defines the interface:
```

```
device type Battery
  features
   empty: out event port;
   voltage: out data port real initially 6.0;
end Battery;
device implementation Battery.Imp
```

end Battery.Imp;

Modelling a battery in AADL

```
Adding modes behavior:
```

```
device type Battery
  features
  empty: out event port;
  voltage: out data port real initially 6.0;
end Battery;
device implementation Battery.Imp
```

```
modes
charged: activation mode
depleted: mode
```

```
transitions
    charged -[]-> charged;
    charged -[empty]-> depleted;
    depleted -[]-> depleted;
end Battery.Imp;
```

Towards trustworthy aerospace systems

System Specification

Modelling a battery in AADL

```
Adding hybrid behavior:
device type Battery
  features
    empty: out event port;
    voltage: out data port real initially 6.0;
end Battery;
device implementation Battery.Imp
  subcomponents
   energy: data continuous initially 100.0;
 modes
    charged: activation mode
      while energy'=-0.02 and energy>=20.0;
   depleted: mode
      while energy'=-0.03;
 transitions
    charged -[then voltage:=energy/50.0+4.0]-> charged;
    charged -[empty when energy<=20.0]-> depleted;
   depleted - [then voltage:=energy/50.0+4.0]-> depleted;
end Battery.Imp;
```


Modeling a redundant power system in AADL

Power system with **battery subcomponents**:

```
system Power
features
voltage: out data port real;
end Power;
system implementation Power.Imp
subcomponents
batt1: device Battery.Imp
batt2: device Battery.Imp
```

end Power.Imp;
Modeling a redundant power system in AADL

```
Adding dynamic reconfiguration:
```

```
system Power
features
voltage: out data port real;
end Power;
system implementation Power.Imp
subcomponents
batt1: device Battery.Imp in modes (primary);
```

batt2: device Battery.Imp in modes (backup);


```
modes
primary: initial mode;
backup: mode;
transitions
primary -[batt1.empty]-> backup;
backup -[batt2.empty]-> primary;
end Power.Imp;
```

Modeling a redundant power system in AADL

```
Adding port connections:
```

```
system Power
 features
   voltage: out data port real;
end Power:
system implementation Power.Imp
  subcomponents
   batt1: device Battery.Imp in modes (primary);
    batt2: device Battery.Imp in modes (backup);
  connections
   data port batt1.voltage -> voltage in modes (primary);
   data port batt2.voltage -> voltage in modes (backup);
 modes
   primary: initial mode;
   backup: mode;
  transitions
    primary -[batt1.empty]-> backup;
    backup -[batt2.empty]-> primary;
end Power.Imp;
```


Deviations from AADL

Omissions

Some advanced features of AADL such as property associations, component refinement, prototypes, event data ports, in out ports, ...

Deviations from AADL

Omissions

Some advanced features of AADL such as property associations, component refinement, prototypes, event data ports, in out ports, ...

Simplifications

(multi-way) synchronous communication (rather than asynchronous channel communication).

Deviations from AADL

Omissions

Some advanced features of AADL such as property associations, component refinement, prototypes, event data ports, in out ports, ...

Simplifications

(multi-way) synchronous communication (rather than asynchronous channel communication).

Extensions

- default values for data elements
- support for mode/error state history (upon component re-activation)
- hybridity, i.e., mode invariants, trajectory equations
- specification of observability requirements

Event-data automata

Definition (Event-data automaton)

An event-data automaton (EDA) is a tuple $\mathfrak{A} = (M, m_0, X, v_0, \iota, E, \rightarrow)$

with

- M finite set of modes
 - $m_0 \in M$ initial mode
- ► $X = IX \uplus OX \uplus LX$ finite set of input/output/local variables
- $V := \{v \mid v : X \rightarrow \ldots\}$ valuations
 - $v_0 \in V$ initial valuation
- ▶ $\iota : M \to (V \to \mathbb{B})$ mode invariants (where $\iota(m_0, v_0) = \text{true})$
- $E = IE \uplus OE$ finite set of input/output events

$$\rightarrow \subseteq M \times \underbrace{E_{\tau}}_{\text{trigger}} \times \underbrace{(V \to \mathbb{B})}_{\text{guard}} \times \underbrace{(V \to V)}_{\text{effect}} \times M$$
(mode) transition relation (where $E_{\tau} := E \cup \{\tau\}$

► AADL modes/invariants/transitions → EDA modes/invariants/transitions

Example (Battery)

• $M = \{\text{charged}, \text{depleted}\}, m_0 = \text{charged}$

- ► Incoming/outgoing data ports ~→ input/output variables

- $M = \{ charged, depleted \}, m_0 = charged$
- $IX = \emptyset$, $OX = \{voltage\}$

- ► Incoming/outgoing data ports ~→ input/output variables
- ► Data subcomponents ~ local variables

- $M = \{$ charged, depleted $\}, m_0 =$ charged
- $IX = \emptyset$, $OX = \{voltage\}$
- $LX = \{\text{energy}\}$

- ► Incoming/outgoing data ports ~→ input/output variables
- Data subcomponents ~> local variables
- ► Incoming/outgoing event ports ~> input/output events

- $M = \{$ charged, depleted $\}, m_0 =$ charged
- $IX = \emptyset$, $OX = \{voltage\}$
- $LX = \{\texttt{energy}\}$
- ▶ $IE = \emptyset$, $OE = \{empty\}$

- States are pairs: a mode and a variable valuation
- Transitions: timed or internal or event-labeled

- States are pairs: a mode and a variable valuation
- Transitions: timed or internal or event-labeled

Example (Battery)

 $\langle \texttt{mode} = \texttt{charged}, \texttt{energy} = 100.0, \texttt{voltage} = 6.0 \rangle$

- States are pairs: a mode and a variable valuation
- Transitions: timed or internal or event-labeled

Example (Battery)

 $\langle mode = charged, energy = 100.0, voltage = 6.0 \rangle$ $\downarrow 30.0$

 $\langle \texttt{mode} = \texttt{charged}, \texttt{energy} = 40.0, \texttt{voltage} = 6.0 \rangle$

- States are pairs: a mode and a variable valuation
- Transitions: timed or internal or event-labeled

Example (Battery)

 $\langle mode = charged, energy = 100.0, voltage = 6.0 \rangle$ $\downarrow 30.0$ $\langle mode = charged, energy = 40.0, voltage = 6.0 \rangle$ $\downarrow \tau \langle voltage := ... \rangle$

 $\langle \texttt{mode} = \texttt{charged}, \texttt{energy} = 40.0, \texttt{voltage} = 4.8 \rangle$

- States are pairs: a mode and a variable valuation
- Transitions: timed or internal or event-labeled

Example (Battery)

 $\begin{array}{l} \langle \texttt{mode} = \texttt{charged}, \texttt{energy} = \texttt{100.0}, \texttt{voltage} = \texttt{6.0} \rangle \\ & \downarrow \texttt{30.0} \\ \langle \texttt{mode} = \texttt{charged}, \texttt{energy} = \texttt{40.0}, \texttt{voltage} = \texttt{6.0} \rangle \\ & \downarrow \tau \langle \texttt{voltage} := \ldots \rangle \\ \langle \texttt{mode} = \texttt{charged}, \texttt{energy} = \texttt{40.0}, \texttt{voltage} = \texttt{4.8} \rangle \\ & \downarrow \texttt{10.0} \\ \langle \texttt{mode} = \texttt{charged}, \texttt{energy} = \texttt{20.0}, \texttt{voltage} = \texttt{4.8} \rangle \end{array}$

- States are pairs: a mode and a variable valuation
- Transitions: timed or internal or event-labeled

Example (Battery)

 $\begin{array}{l} \langle \texttt{mode} = \texttt{charged}, \texttt{energy} = 100.0, \texttt{voltage} = 6.0 \rangle \\ & \downarrow 30.0 \\ \\ \langle \texttt{mode} = \texttt{charged}, \texttt{energy} = 40.0, \texttt{voltage} = 6.0 \rangle \\ & \downarrow \tau \langle \texttt{voltage:=...} \rangle \\ \\ \langle \texttt{mode} = \texttt{charged}, \texttt{energy} = 40.0, \texttt{voltage} = 4.8 \rangle \\ & \downarrow 10.0 \\ \\ \langle \texttt{mode} = \texttt{charged}, \texttt{energy} = 20.0, \texttt{voltage} = 4.8 \rangle \\ & \downarrow \tau \langle \texttt{voltage:=...} \rangle \\ \\ \langle \texttt{mode} = \texttt{charged}, \texttt{energy} = 20.0, \texttt{voltage} = 4.4 \rangle \\ \end{array}$

- States are pairs: a mode and a variable valuation
- Transitions: timed or internal or event-labeled

Example (Battery)

(mode = charged, energy = 100.0, voltage = 6.0)| 30.0 (mode = charged, energy = 40.0, voltage = 6.0) $\perp \tau \langle \text{voltage} := \dots \rangle$ (mode = charged, energy = 40.0, voltage = 4.8)| 10.0 (mode = charged, energy = 20.0, voltage = 4.8) $\downarrow \tau \langle voltage:=... \rangle$ (mode = charged, energy = 20.0, voltage = 4.4)↓ empty (mode = depleted, energy = 20.0, voltage = 4.4)

- States are pairs: a mode and a variable valuation
- Transitions: timed or internal or event-labeled

```
(mode = charged, energy = 100.0, voltage = 6.0)
                           | 30.0
(mode = charged, energy = 40.0, voltage = 6.0)
                           \perp \tau \langle \text{voltage} := \dots \rangle
(mode = charged, energy = 40.0, voltage = 4.8)
                           | 10.0
(mode = charged, energy = 20.0, voltage = 4.8)
                           \downarrow \tau \langle voltage:=... \rangle
(mode = charged, energy = 20.0, voltage = 4.4)
                           ↓ empty
(mode = depleted, energy = 20.0, voltage = 4.4)
                            . . .
```

Networks of event-data automata

Dynamic reconfiguration

 \implies component activity and port connections mode dependent

Definition (Networks of Event-Data Automata)

A network of event-data automata (NEDA) is a tuple

$$\mathfrak{N} = ((\mathfrak{A}_i)_{i \in [n]}, \alpha, EC, DC)$$

with $n \ge 1$, $[n] := \{1, ..., n\}$, and

- ▶ each \mathfrak{A}_i an EDA $\mathfrak{A}_i = (M_i, m_0^i, X_i, v_0^i, \iota_i, E_i, \rightarrow_i)$
- $M := \prod_{i=1}^{n} M_i$ set of global modes
- $\alpha: M \to 2^{[n]}$ activation mapping

▶ $EC: M \rightarrow (\{i.e \mid i \in [n], e \in E_i\})^2$ event connection mapping

▶ $DC: M \rightarrow (\{i.x \mid i \in [n], x \in X_i\})^2$ data connection mapping

Semantics of an entire AADL model

► AADL subcomponent declarations ~→ activation mapping:

- root component always active
- ► c active and in mode m, subcomponent c' of c activated in m ⇒ c' active

Example (Power System)

For Power/Battery1/Battery2 ($m_1, m_2 \in \{\text{charged}, \text{depleted}\}$):

•
$$\alpha(\text{primary}, m_1, m_2) = \{1, 2\}$$

 $\alpha(\text{backup}, m_1, m_2) = \{1, 3\}$

Semantics of an entire AADL model

AADL event/data connections ~>> EC/DC mappings: follow all end-to-end chains of port connections

Example (Power System)

For Power/Battery1/Battery2 ($m_1, m_2 \in \{\text{charged}, \text{depleted}\}$):

Operational semantics of networks of EDAs \blacktriangleright States := $(M_1 \times V_1) \times \ldots \times (M_n \times V_n)$

- Transitions determined by active EDAs:
 - 1. Perform local transitions:
 - timed local transition in all EDAs or
 - internal transition in EDA or
 - multi-way event communication from EDA to \geq 1 connected EDAs
 - 2. Initialize (re-)activated subcomponents
 - 3. Establish consistency w.r.t. *DC* (copy source \rightarrow target data port)

Operational semantics of networks of EDAs

- States := $(M_1 \times V_1) \times \ldots \times (M_n \times V_n)$
- Transitions determined by <u>active</u> EDAs:
 - 1. Perform local transitions:
 - timed local transition in all EDAs or
 - internal transition in EDA or
 - multi-way event communication from EDA to \geq 1 connected EDAs
 - 2. Initialize (re-)activated subcomponents
 - 3. Establish consistency w.r.t. *DC* (copy source \rightarrow target data port)

Example (Power system)

 $\langle \texttt{m} \!=\! \underline{\texttt{primary}}, \texttt{v} \!=\! 6.0 \rangle \big| \langle \texttt{m} \!=\! \underline{\texttt{charged}}, \texttt{e} \!=\! 100.0, \texttt{v} \!=\! 6.0 \rangle \big| \langle \texttt{m} \!=\! \texttt{charged}, \texttt{e} \!=\! 100.0, \texttt{v} \!=\! 6.0 \rangle \big| \langle \texttt{m} \!=\! \texttt{charged}, \texttt{e} \!=\! 100.0, \texttt{v} \!=\! 6.0 \rangle \big| \langle \texttt{m} \!=\! \texttt{charged}, \texttt{e} \!=\! 100.0, \texttt{v} \!=\! 6.0 \rangle \big| \langle \texttt{m} \!=\! \texttt{charged}, \texttt{e} \!=\! 100.0, \texttt{v} \!=\! 6.0 \rangle \big| \langle \texttt{m} \!=\! \texttt{charged}, \texttt{e} \!=\! 100.0, \texttt{v} \!=\! 6.0 \rangle \big| \langle \texttt{m} \!=\! \texttt{charged}, \texttt{e} \!=\! 100.0, \texttt{v} \!=\! 6.0 \rangle \big| \langle \texttt{m} \!=\! \texttt{charged}, \texttt{e} \!=\! 100.0, \texttt{v} \!=\! 6.0 \rangle \big| \langle \texttt{m} \!=\! \texttt{charged}, \texttt{e} \!=\! 100.0, \texttt{v} \!=\! 6.0 \rangle \big| \langle \texttt{m} \!=\! \texttt{charged}, \texttt{e} \!=\! 100.0, \texttt{v} \!=\! 6.0 \rangle \big| \langle \texttt{m} \!=\! \texttt{charged}, \texttt{e} \!=\! 100.0, \texttt{v} \!=\! 6.0 \rangle \big| \langle \texttt{m} \!=\! \texttt{charged}, \texttt{e} \!=\! 100.0, \texttt{v} \!=\! 6.0 \rangle \big| \langle \texttt{m} \!=\! \texttt{charged}, \texttt{e} \!=\! 100.0, \texttt{v} \!=\! 6.0 \rangle \big| \langle \texttt{m} \!=\! \texttt{charged}, \texttt{e} \!=\! 100.0, \texttt{v} \!=\! 6.0 \rangle \big| \langle \texttt{m} \!=\! \texttt{charged}, \texttt{e} \!=\! 100.0, \texttt{v} \!=\! 6.0 \rangle \big| \langle \texttt{m} \!=\! \texttt{charged}, \texttt{e} \!=\! 100.0, \texttt{v} \!=\! 6.0 \rangle \big| \langle \texttt{m} \!=\! \texttt{charged}, \texttt{e} \!=\! 100.0, \texttt{v} \!=\! 6.0 \rangle \big| \langle \texttt{m} \!=\! \texttt{charged}, \texttt{e} \!=\! 100.0, \texttt{v} \!=\! 6.0 \rangle \big| \langle \texttt{m} \!=\! \texttt{charged}, \texttt{e} \!=\! 100.0, \texttt{v} \!=\! 6.0 \rangle \big| \langle \texttt{m} \!=\! \texttt{charged}, \texttt{e} \!=\! 100.0, \texttt{v} \!=\! 6.0 \rangle \big| \langle \texttt{m} \!=\! \texttt{charged}, \texttt{e} \!=\! 100.0, \texttt{v} \!=\! 6.0 \rangle \big| \langle \texttt{m} \!=\! \texttt{charged}, \texttt{e} \!=\! 100.0, \texttt{v} \!=\! 6.0 \rangle \big| \langle \texttt{m} \!=\! \texttt{charged}, \texttt{e} \!=\! 100.0, \texttt{v} \!=\! 6.0 \rangle \big| \langle \texttt{m} \!=\! \texttt{charged}, \texttt{e} \!=\! 100.0, \texttt{v} \!=\! 6.0 \rangle \big| \langle \texttt{m} \!=\! \texttt{charged}, \texttt{e} \!=\! 100.0, \texttt{v} \!=\! 6.0 \rangle \big| \langle \texttt{m} \!=\! \texttt{charged}, \texttt{e} \!=\! 100.0, \texttt{v} \!=\! 6.0 \rangle \big| \langle \texttt{m} \!=\! \texttt{charged}, \texttt{e} \!=\! 100.0, \texttt{v} \!=\! 6.0 \rangle \big| \langle \texttt{m} \!=\! \texttt{charged}, \texttt{e} \!=\! 100.0, \texttt{v} \!=\! 6.0 \rangle \big| \langle \texttt{m} \!=\! 100.0, \texttt{v} \!=\! 10.0 \rangle \big| \langle \texttt{m} \!=\! 10.0, \texttt{v} \!=\! 10.0 \rangle \big| \langle \texttt{m} \!=\! 10.0, \texttt{v} \!=\! 10.0 \rangle \big| \langle \texttt{m} \!=\! 10.0 \rangle \big$

Operational semantics of networks of EDAs \blacktriangleright States := $(M_1 \times V_1) \times \ldots \times (M_n \times V_n)$

- Transitions determined by active EDAs:
 - 1. Perform local transitions:
 - timed local transition in all EDAs or
 - internal transition in EDA or
 - multi-way event communication from EDA to ≥ 1 connected EDAs
 - 2. Initialize (re-)activated subcomponents
 - 3. Establish consistency w.r.t. DC (copy source \rightarrow target data port)

Example (Power system)

 $\langle \mathbf{m} = \underline{\mathbf{primary}}, \mathbf{v} = 6.0 \rangle | \langle \mathbf{m} = \underline{\mathbf{charged}}, \mathbf{e} = 100.0, \mathbf{v} = 6.0 \rangle | \langle \mathbf{m} = \mathbf{charged}, \mathbf{e} = 100.0, \mathbf{v} = 6.0 \rangle | \langle \mathbf{m} = \mathbf{charged}, \mathbf{e} = 100.0, \mathbf{v} = 6.0 \rangle | \langle \mathbf{m} = \mathbf{charged}, \mathbf{e} = 100.0, \mathbf{v} = 6.0 \rangle | \langle \mathbf{m} = \mathbf{charged}, \mathbf{e} = 100.0, \mathbf{v} = 6.0 \rangle | \langle \mathbf{m} = \mathbf{charged}, \mathbf{e} = 100.0, \mathbf{v} = 6.0 \rangle | \langle \mathbf{m} = \mathbf{charged}, \mathbf{e} = 100.0, \mathbf{v} = 6.0 \rangle | \langle \mathbf{m} = \mathbf{charged}, \mathbf{e} = 100.0, \mathbf{v} = 6.0 \rangle | \langle \mathbf{m} = \mathbf{charged}, \mathbf{e} = 100.0, \mathbf{v} = 6.0 \rangle | \langle \mathbf{m} = \mathbf{charged}, \mathbf{e} = 100.0, \mathbf{v} = 6.0 \rangle | \langle \mathbf{m} = \mathbf{charged}, \mathbf{e} = 100.0, \mathbf{v} = 6.0 \rangle | \langle \mathbf{m} = \mathbf{charged}, \mathbf{e} = 100.0, \mathbf{v} = 6.0 \rangle | \langle \mathbf{m} = \mathbf{charged}, \mathbf{e} = 100.0, \mathbf{v} = 6.0 \rangle | \langle \mathbf{m} = \mathbf{charged}, \mathbf{e} = 100.0, \mathbf{v} = 6.0 \rangle | \langle \mathbf{m} = \mathbf{charged}, \mathbf{e} = 100.0, \mathbf{v} = 6.0 \rangle | \langle \mathbf{m} = \mathbf{charged}, \mathbf{e} = 100.0, \mathbf{v} = 6.0 \rangle | \langle \mathbf{m} = \mathbf{charged}, \mathbf{e} = 100.0, \mathbf{v} = 6.0 \rangle | \langle \mathbf{m} = \mathbf{charged}, \mathbf{e} = 100.0, \mathbf{v} = 6.0 \rangle | \langle \mathbf{m} = \mathbf{charged}, \mathbf{e} = 100.0, \mathbf{v} = 6.0 \rangle | \langle \mathbf{m} = \mathbf{charged}, \mathbf{e} = 100.0, \mathbf{v} = 6.0 \rangle | \langle \mathbf{m} = \mathbf{charged}, \mathbf{e} = 100.0, \mathbf{v} = 6.0 \rangle | \langle \mathbf{m} = \mathbf{charged}, \mathbf{e} = 100.0, \mathbf{v} = 6.0 \rangle | \langle \mathbf{m} = \mathbf{charged}, \mathbf{e} = 100.0, \mathbf{v} = 6.0 \rangle | \langle \mathbf{m} = \mathbf{charged}, \mathbf{e} = 100.0, \mathbf{v} = 6.0 \rangle | \langle \mathbf{m} = \mathbf{charged}, \mathbf{e} = 100.0, \mathbf{v} = 6.0 \rangle | \langle \mathbf{m} = \mathbf{charged}, \mathbf{e} = 100.0, \mathbf{v} = 6.0 \rangle | \langle \mathbf{m} = \mathbf{charged}, \mathbf{e} = 100.0, \mathbf{v} = 6.0 \rangle | \langle \mathbf{m} = \mathbf{charged}, \mathbf{e} = 100.0, \mathbf{v} = 6.0 \rangle | \langle \mathbf{m} = \mathbf{charged}, \mathbf{e} = 100.0, \mathbf{v} = 6.0 \rangle | \langle \mathbf{m} = \mathbf{charged}, \mathbf{e} = 100.0, \mathbf{v} = 6.0 \rangle | \langle \mathbf{m} = \mathbf{charged}, \mathbf{e} = 100.0, \mathbf{v} = 6.0 \rangle | \langle \mathbf{m} = \mathbf{charged}, \mathbf{e} = 100.0, \mathbf{v} = 6.0 \rangle | \langle \mathbf{m} = \mathbf{charged}, \mathbf{e} = 100.0, \mathbf{v} = 6.0 \rangle | \langle \mathbf{m} = \mathbf{charged}, \mathbf{e} = 100.0, \mathbf{v} = 6.0 \rangle | \langle \mathbf{m} = \mathbf{charged}, \mathbf{e} = 100.0, \mathbf{v} = 6.0 \rangle | \langle \mathbf{m} = \mathbf{charged}, \mathbf{e} = 100.0, \mathbf{v} = 6.0 \rangle | \langle \mathbf{m} = \mathbf{charged}, \mathbf{e} = 100.0, \mathbf{v} = 6.0 \rangle | \langle \mathbf{m} = \mathbf{charged}, \mathbf{e} = 100.0, \mathbf{v} = 6.0 \rangle | \langle \mathbf{m} = \mathbf{charged}, \mathbf{e} = 100.0, \mathbf{v} = 6.0 \rangle | \langle \mathbf{m} = \mathbf{charged}, \mathbf{e} = 100.0, \mathbf{v} = 6.0 \rangle | \langle$

Operational semantics of networks of EDAs

- States := $(M_1 \times V_1) \times \ldots \times (M_n \times V_n)$
- Transitions determined by <u>active</u> EDAs:
 - 1. Perform local transitions:
 - timed local transition in all EDAs or
 - internal transition in EDA or
 - multi-way event communication from EDA to \geq 1 connected EDAs
 - 2. Initialize (re-)activated subcomponents
 - 3. Establish consistency w.r.t. *DC* (copy source \rightarrow target data port)

Example (Power system)

Operational semantics of networks of EDAs

- States := $(M_1 \times V_1) \times \ldots \times (M_n \times V_n)$
- Transitions determined by <u>active</u> EDAs:
 - 1. Perform local transitions:
 - timed local transition in all EDAs or
 - internal transition in EDA or
 - multi-way event communication from EDA to \geq 1 connected EDAs
 - 2. Initialize (re-)activated subcomponents
 - 3. Establish consistency w.r.t. *DC* (copy source \rightarrow target data port)

Example (Power system)

 $\begin{array}{l} \langle \mathtt{m}=\underline{\mathtt{primary}},\mathtt{v}=6.0\rangle \left| \langle \mathtt{m}=\underline{\mathtt{charged}},\mathtt{e}=100.0,\mathtt{v}=6.0\rangle \right| \langle \mathtt{m}=\underline{\mathtt{charged}},\mathtt{e}=100.0,\mathtt{v}=6.0\rangle \\ \langle \mathtt{m}=\underline{\mathtt{primary}},\mathtt{v}=6.0\rangle \left| \langle \mathtt{m}=\underline{\mathtt{charged}},\mathtt{e}=20.0,\mathtt{v}=6.0\rangle \right| \langle \mathtt{m}=\mathtt{charged},\mathtt{e}=100.0,\mathtt{v}=6.0\rangle \\ \langle \mathtt{m}=\underline{\mathtt{primary}},\mathtt{v}=4.4\rangle \right| \langle \mathtt{m}=\underline{\mathtt{charged}},\mathtt{e}=20.0,\mathtt{v}=4.4\rangle \left| \langle \mathtt{m}=\mathtt{charged},\mathtt{e}=100.0,\mathtt{v}=6.0\rangle \right| \\ \langle \mathtt{m}=\mathtt{backup},\mathtt{v}=6.0\rangle \left| \langle \mathtt{m}=\mathtt{depleted},\mathtt{e}=20.0,\mathtt{v}=4.4\rangle \right| \langle \mathtt{m}=\mathtt{charged},\mathtt{e}=100.0,\mathtt{v}=6.0\rangle \\ \end{array}$

Operational semantics of networks of EDAs \blacktriangleright States := $(M_1 \times V_1) \times \ldots \times (M_n \times V_n)$

- Transitions determined by <u>active</u> EDAs:
 - 1. Perform local transitions:
 - timed local transition in all EDAs or
 - internal transition in EDA or
 - multi-way event communication from EDA to ≥ 1 connected EDAs
 - 2. Initialize (re-)activated subcomponents
 - 3. Establish consistency w.r.t. DC (copy source \rightarrow target data port)

Example (Power system)

$$\begin{array}{l} \langle \mathtt{m}=\underline{\mathtt{primary}},\mathtt{v}=6.0\rangle \left| \langle \mathtt{m}=\underline{\mathtt{charged}},\mathtt{e}=100.0,\mathtt{v}=6.0\rangle \right| \langle \mathtt{m}=\underline{\mathtt{charged}},\mathtt{e}=100.0,\mathtt{v}=6.0\rangle \\ & \Downarrow 40.0 \\ \langle \mathtt{m}=\underline{\mathtt{primary}},\mathtt{v}=6.0\rangle \right| \langle \mathtt{m}=\underline{\mathtt{charged}},\mathtt{e}=20.0,\mathtt{v}=6.0\rangle \left| \langle \mathtt{m}=\underline{\mathtt{charged}},\mathtt{e}=100.0,\mathtt{v}=6.0\rangle \right| \\ \langle \mathtt{m}=\underline{\mathtt{primary}},\mathtt{v}=4.4\rangle \right| \langle \mathtt{m}=\underline{\mathtt{charged}},\mathtt{e}=20.0,\mathtt{v}=4.4\rangle \left| \langle \mathtt{m}=\underline{\mathtt{charged}},\mathtt{e}=100.0,\mathtt{v}=6.0\rangle \right| \\ \langle \mathtt{m}=\underline{\mathtt{backup}},\mathtt{v}=6.0\rangle \left| \langle \mathtt{m}=\mathtt{depleted},\mathtt{e}=20.0,\mathtt{v}=4.4\rangle \right| \langle \mathtt{m}=\underline{\mathtt{charged}},\mathtt{e}=100.0,\mathtt{v}=6.0\rangle \\ & \Downarrow 40.0 \\ \langle \mathtt{m}=\underline{\mathtt{backup}},\mathtt{v}=6.0\rangle \left| \langle \mathtt{m}=\mathtt{depleted},\mathtt{e}=20.0,\mathtt{v}=4.4\rangle \right| \langle \mathtt{m}=\underline{\mathtt{charged}},\mathtt{e}=20.0,\mathtt{v}=6.0\rangle \\ \end{array}$$

Operational semantics of networks of EDAs

- States := $(M_1 \times V_1) \times \ldots \times (M_n \times V_n)$
- Transitions determined by <u>active</u> EDAs:
 - 1. Perform local transitions:
 - timed local transition in all EDAs or
 - internal transition in EDA or
 - multi-way event communication from EDA to \geq 1 connected EDAs
 - 2. Initialize (re-)activated subcomponents
 - 3. Establish consistency w.r.t. *DC* (copy source \rightarrow target data port)

Example (Power system)

$$\begin{array}{l} \left\langle \mathtt{m}=\underline{\mathtt{primary}},\mathtt{v}=6.0\right\rangle \left|\left\langle \mathtt{m}=\underline{\mathtt{charged}},\mathtt{e}=100.0,\mathtt{v}=6.0\right\rangle \right| \left\langle \mathtt{m}=\underline{\mathtt{charged}},\mathtt{e}=100.0,\mathtt{v}=6.0\right\rangle \\ \left\langle \mathtt{m}=\underline{\mathtt{primary}},\mathtt{v}=6.0\right\rangle \right| \left\langle \mathtt{m}=\underline{\mathtt{charged}},\mathtt{e}=20.0,\mathtt{v}=6.0\right\rangle \left|\left\langle \mathtt{m}=\underline{\mathtt{charged}},\mathtt{e}=100.0,\mathtt{v}=6.0\right\rangle \\ \left\langle \mathtt{m}=\underline{\mathtt{primary}},\mathtt{v}=4.4\right\rangle \right| \left\langle \mathtt{m}=\underline{\mathtt{charged}},\mathtt{e}=20.0,\mathtt{v}=4.4\right\rangle \left|\left\langle \mathtt{m}=\underline{\mathtt{charged}},\mathtt{e}=100.0,\mathtt{v}=6.0\right\rangle \\ \left\langle \mathtt{m}=\underline{\mathtt{backup}},\mathtt{v}=6.0\right\rangle \left|\left\langle \mathtt{m}=\underline{\mathtt{depleted}},\mathtt{e}=20.0,\mathtt{v}=4.4\right\rangle \right| \left\langle \mathtt{m}=\underline{\mathtt{charged}},\mathtt{e}=100.0,\mathtt{v}=6.0\right\rangle \\ \left\langle \mathtt{m}=\underline{\mathtt{backup}},\mathtt{v}=6.0\right\rangle \left|\left\langle \mathtt{m}=\underline{\mathtt{depleted}},\mathtt{e}=20.0,\mathtt{v}=4.4\right\rangle \right| \left\langle \mathtt{m}=\underline{\mathtt{charged}},\mathtt{e}=100.0,\mathtt{v}=6.0\right\rangle \\ \left\langle \mathtt{m}=\underline{\mathtt{backup}},\mathtt{v}=6.0\right\rangle \left|\left\langle \mathtt{m}=\underline{\mathtt{depleted}},\mathtt{e}=20.0,\mathtt{v}=4.4\right\rangle \right| \left\langle \mathtt{m}=\underline{\mathtt{charged}},\mathtt{e}=20.0,\mathtt{v}=6.0\right\rangle \\ \left\langle \mathtt{m}=\underline{\mathtt{backup}},\mathtt{v}=6.0\right\rangle \left|\left\langle \mathtt{m}=\mathtt{depleted},\mathtt{e}=20.0,\mathtt{v}=4.4\right\rangle \right| \left\langle \mathtt{m}=\underline{\mathtt{charged}},\mathtt{e}=20.0,\mathtt{v}=6.0\right\rangle \\ \left\langle \mathtt{m}=\underline{\mathtt{backup}},\mathtt{v}=6.0\right\rangle \left|\left\langle \mathtt{m}=\mathtt{depleted},\mathtt{e}=20.0,\mathtt{v}=4.4\right\rangle \right| \left\langle \mathtt{m}=\underline{\mathtt{charged}},\mathtt{e}=20.0,\mathtt{v}=6.0\right\rangle \\ \left\langle \mathtt{m}=\underline{\mathtt{m}},\mathtt{v}=6.0\right\rangle \right| \left\langle \mathtt{m}=\mathtt{depleted},\mathtt{e}=20.0,\mathtt{v}=4.4\right\rangle \right| \left\langle \mathtt{m}=\underline{\mathtt{charged}},\mathtt{e}=20.0,\mathtt{v}=6.0\right\rangle \\ \left\langle \mathtt{m}=\underline{\mathtt{m}},\mathtt{m}=\underline{\mathtt{m}$$

```
error model BatteryFailure
features
ok: initial state;
dead: error state;
batteryDied: out error propagation;
end BatteryFailure;
error model implementation BatteryFailure.Imp
events
fault: error event occurrence poisson 0.01;
transitions
ok -[fault]-> dead;
dead -[batteryDied]-> dead;
end BatteryFailure.Imp;
```

```
error model BatteryFailure
features
ok: initial state;
dead: error state;
batteryDied: out error propagation;
end BatteryFailure;
error model implementation BatteryFailure.Imp
events
fault: error event occurrence poisson 0.01;
transitions
ok -[fault]-> dead;
dead -[batteryDied]-> dead;
end BatteryFailure.Imp;
```

Repair

reset events (not in example) can be sent from nominal to error model of same component to attempt to repair the occurred fault.

```
error model BatteryFailure
features
ok: initial state;
dead: error state;
batteryDied: out error propagation;
end BatteryFailure;
error model implementation BatteryFailure.Imp
events
fault: error event occurrence poisson 0.01;
transitions
ok -[fault]-> dead;
dead -[batteryDied]-> dead;
end BatteryFailure.Imp;
```

Fault injection

An error model does not influence the nominal behaviour unless they are linked through fault injection.

```
error model BatteryFailure
features
    ok: initial state;
    dead: error state;
    batteryDied: out error propagation;
end BatteryFailure;
error model implementation BatteryFailure.Imp
    events
    fault: error event occurrence poisson 0.01;
    transitions
    ok -[fault]-> dead;
    dead -[batteryDied]-> dead;
end BatteryFailure.Imp;
```

Fault injection

A fault injection (s, d, a) means that on entering error state s, the assignment d := a is performed, where d is a data subcomponent and a the fault effect.

```
error model BatteryFailure
  features
    ok: initial state;
    dead: error state;
    batteryDied: out error propagation;
end BatteryFailure;
error model implementation BatteryFailure.Imp
  events
    fault: error event occurrence poisson 0.01;
  transitions
    ok -[fault]-> dead;
    dead -[batteryDied]-> dead;
end BatteryFailure.Imp;
```

Fault injection example

In error state dead, voltage:=0

Model extension

Nominal model + error model + fault injections = extended model

- Modes are pairs of nominal modes and error model states
 - Starting mode = (the original starting mode, the starting error state)
- Set of event ports +:= the error propagations
- Event port connections +:= propagation port connections
- Transition relation := all possible interleavings and interactions between nominal and error model, taking failure effects into account
- Other elements (e.g., mode invariants) are unaffected

Model extension

Nominal model + error model + fault injections = extended model

- Modes are pairs of nominal modes and error model states
 - Starting mode = (the original starting mode, the starting error state)
- Set of event ports +:= the error propagations
- Event port connections +:= propagation port connections
- Transition relation := all possible interleavings and interactions between nominal and error model, taking failure effects into account
- Other elements (e.g., mode invariants) are unaffected

Probabilistic error transitions

As an error model has probabilistic transitions, our semantical model has to be equipped with such transitions.

This yields interactive Markov chains := LTS + Markov chains.

Battery component

Nominal specification:

```
device type Battery
  features
    empty: out event port;
    voltage: out data port real initially 6.0;
end Battery;
device implementation Battery.Imp
  subcomponents
    energy: data continuous initially 100.0;
  modes
    charged: activation mode while ...;
    depleted: mode while ...;
  transitions
    charged -[then voltage:=...]-> charged;
    charged -[empty when energy<=20.0]-> depleted;
    depleted -[then voltage:=...]-> depleted;
```
Product construction for modes:

```
device type Battery
  features
    empty: out event port;
    voltage: out data port real initially 6.0;
end Battery;
device implementation Battery.Imp
  subcomponents
    energy: data continuous initially 100.0;
  modes
    charged#ok: activation mode while ...;
    depleted#ok, charged#dead, depleted#dead: mode while ...;
  transitions
    charged -[then voltage:=...]-> charged;
    charged -[empty when energy<=20.0]-> depleted;
    depleted -[then voltage:=...]-> depleted;
```

Integrate nominal transitions:

```
device type Battery
  features
    empty: out event port;
    voltage: out data port real initially 6.0;
end Battery;
device implementation Battery.Imp
  subcomponents
    energy: data continuous initially 100.0;
  modes
    charged#ok: activation mode while ...;
    depleted#ok, charged#dead, depleted#dead: mode while ...;
  transitions
    charged#ok -[then voltage:=...]-> charged#ok;
    charged#ok -[empty when energy<=20.0]-> depleted#ok;
    depleted#ok -[then voltage:=...]-> depleted#ok;
```

Fault injection:

```
device type Battery
  features
    empty: out event port;
    voltage: out data port real initially 6.0;
end Battery;
device implementation Battery.Imp
  subcomponents
    energy: data continuous initially 100.0;
  modes
    charged#ok: activation mode while ...;
    depleted#ok, charged#dead, depleted#dead: mode while ...;
  transitions
    charged#ok -[then voltage:=...]-> charged#ok;
    charged#ok -[empty when energy<=20.0]-> depleted#ok;
    depleted#ok -[then voltage:=...]-> depleted#ok;
    charged#ok -[prob 0.001 then voltage:=0]-> charged#dead;
    depleted#ok -[prob 0.001 then voltage:=0]-> depleted#dead;
```

Nominal transitions with fault effects:

```
device type Battery
  features
   empty: out event port;
    voltage: out data port real initially 6.0;
end Batterv:
device implementation Battery.Imp
  subcomponents
   energy: data continuous initially 100.0;
 modes
    charged#ok: activation mode while ...;
   depleted#ok, charged#dead, depleted#dead: mode while ...;
  transitions
    charged#ok -[then voltage:=...]-> charged#ok;
    charged#ok -[empty when energy<=20.0]-> depleted#ok;
    depleted#ok -[then voltage:=...]-> depleted#ok;
    charged#ok -[prob 0.001 then voltage:=0]-> charged#dead;
   depleted#ok -[prob 0.001 then voltage:=0]-> depleted#dead;
    charged#dead -[then voltage:=0]-> charged#dead;
    charged#dead -[empty when energy<=20.0]-> depleted#dead;
    depleted#dead -[then voltage:=0]-> depleted#dead;
```

Add error propagations:

```
device type Battery
 features
    empty: out event port;
    voltage: out data port real initially 6.0;
    batteryDied: out event port;
end Batterv:
device implementation Battery.Imp
  subcomponents
   energy: data continuous initially 100.0;
 modes
    charged#ok: activation mode while ...;
   depleted#ok, charged#dead, depleted#dead: mode while ...;
  transitions
    charged#ok -[then voltage:=...]-> charged#ok;
    charged#ok -[empty when energy<=20.0]-> depleted#ok;
    depleted#ok -[then voltage:=...]-> depleted#ok;
    charged#ok -[prob 0.001 then voltage:=0]-> charged#dead;
    depleted#ok -[prob 0.001 then voltage:=0]-> depleted#dead;
    charged#dead -[then voltage:=0]-> charged#dead;
    charged#dead -[empty when energy<=20.0]-> depleted#dead;
    depleted#dead -[then voltage:=0]-> depleted#dead;
   depleted#dead -[batteryDied]-> depleted#dead;
```

The complete power system model

Specifying observability

- Specification of observables for diagnosability analysis
 - for outgoing data ports of type bool
- Example:

```
system PowerSystem
  features
    voltage: out data port real;
    alarm: out data port bool initially false observable;
end PowerSystem;
system implementation PowerSystem.Imp
  subcomponents
    pow: system Power.Imp;
  connections
    data port pow.voltage -> voltage;
  modes
    normal: initial mode;
    critical: mode:
  transitions
    normal -[when voltage<4.5 then alarm:=true]-> critical;
    critical -[when voltage>5.5 then alarm:=false]-> normal;
end PowerSystem.Imp;
```

Examples

- ► The system shall have a behaviour where with probability higher than p it is the case that Φ holds continously within time bound [t₁, t₂].
- The system shall have a behaviour where Φ globally holds.

Examples

- The system shall have a behaviour where with probability higher than 0.98 it is the case that voltage ≥ 80 holds continously within time bound [0, 10].
- The system shall have a behaviour where $x \leq y$ globally holds.

Examples

•
$$\mathbb{P}_{>0.98}\left(\Box^{[0,10]}(voltage \ge 80)\right)$$

• $\Box(x \le y)$

Examples

▶
$$\mathbb{P}_{>0.98} \left(\Box^{[0,10]} (voltage \ge 80) \right)$$

▶ $\Box(x \le y)$

Implemented pattern systems

Formalism	Intended use	Authors
CTL, LTL	functional properties	[Dwyer et al., 1999]
MTL, TCTL	real-time properties	[Konrad & Cheng, 2005]
PCTL, CSL	probabilistic properties	[Grunske, 2008]

Overview

2 System Specification

- Behavioural Modeling
- Formal Semantics
- Error Modelling
- Property Specification

3 Analysis Facilities

Industrial Evaluation

5 Conclusions and Outlook

Types of analysis

- 1. Validation
 - check logical consistency of logical specification
- 2. Model checking
 - ▶ property patterns, BMC, BDD-based MC, SMT for hybrid
- 3. Safety and dependability
 - FMEA (impact fault modes on events), dynamic FTA
- 4. Diagnosability
 - FDIR
- 5. Performance evaluation
 - using probabilistic model checking
 - effective model reduction techniques

Tool components

NuSMV

- Symbolic LTL and CTL model checker
- BDD- and SAT-based model checking
- Counterexample generation

RAT

- Requirements analyser
- Checks logical consistency

FSAP

Safety analyser

Fault-tree analysis

MRMC

- Model checker for MRMs
- Logics: PCTL and CSL (+rewards)
- Numerical + DES engine
- Bisimulation minimisation

SigRef

- (MT)BDD bisimulation minimisation
- Models: Markov chains

Tool architecture

Model checking view

			Comp	ass Prot	otype Tool				للاصل
e <u>E</u> dit ⊻iew Activit	ies <u>H</u> elp								
Nodel Properties	Validation	Correctness	Performabili	y Saf	ety FDIR				
Properties	Model	Model							
Name	Checking	Simulation							
🖌 observe output	Vou color		andal chacks	d					
always output is	iou selec	iteu %s to be ii	Inder checke	.u.					
	Bur	n Model Checkir	ng		□ M	odel extended l	by Fault Injection	s	
				1010101010101010	mananal)				
	Model	Checker Opti	ons:						
	1 2000	e BDD (CTL and	I LTL)						
	Use								
	• Uso	- CAT (IT)							
	● Us ○ Us	e SAT (LTL only)	1						
	O Use SA	e SAT (LTL only) T Bound: 10) D 🖬 Use	звмс С] Try to Compl	ete			
	O Us O Us SA	e SAT (LTL only) T Bound: 10	💭 🖾 Use	звмс С] Try to Compl	ete			
	Us O Us SA	e SAT (LTL only) T Bound: 10	🔋 🖬 Use	звмс D] Try to Compl	ete			
	Us SA	e SAT (LTL only) T Bound: 10	👔 🖬 Use	звис Б] Try to Compl	ete			
	● Usi O Usi SA	e SAT (LTL only) IT Bound: 10 The prop	berty is f	SBMC E] Try to Compl	ete			
	© Usi O Usi SA	E SAT (LTL only) T Bound: 10 The prop The LTL pro	Derty is f	SBMC E] Try to Compl	ete			
	© Usi O Usi SA	e SAT (LTL only) T Bound: 10 The prop The LTL pro G Joutput has been fo	Derty is f perty: und false. A	SBMC D alse] Try to Compl	ete			
	© Usi O Usi SA	The prop The LTL pro G !output has been fo	Derty is f perty: und false. A	SBMC E alse] Try to Compl	ete			
	© Usi O Usi SA	e SAT (LTL only) If Bound: 10 The prop The LTL pro G !output has been fo Name	Derty is f perty: und false. A	SBMC [alse counter-] Try to Compl example is sho Step2	own below.	Step4	Step5	Ster
	© Usi O Usi SA	e SAT (LTL only) if Bound: 10 The prop The LTL pro G ! output has been fo Name mode	Derty is f perty: und false. A	SBMC E	Try to Compl example is sho Step2 gone_rnd2	ete own below. Step3 gone_md1:	Step4	Step5	Ster
	● Usi ○ Usi SA	e SAT (LTL only) if Bound: 10 The prop The LTL pro G ! output has been fo Name mode run	Derty is f perty: und false. A	SBMC D alse counter- nit 0	Try to Compl example is sho Step2 gone_rnd2 0	ete own below. Step3 <u>gone_rnd1:</u> 0	Step4	Step5	Ster
	Us Us SA	E SAT (LTL only) T Bound: 10 The prop The LTL pro G !output has been fo Name mode run md1.out	Derty is f perty: und false. A	SBMC E	example is sho Step2 gone_rnd2 0	ete . wwn below. Step3 gone_md1: 0	Step4 2 gone_bit2 0	Step5 gone_bit1 0 0	Ster 2
	● Us ○ Us SA	e SAT (LTL only) IT Bound: 10 The prop The LTL pro G ! output has been fo Name mode run md1.out	Derty is f perty: und false. A Step	SBMC E	Tity to Compl example is sho Step2 0 0 1	step 3 Step 3 gone_rnd1: 0 1	Step4 2 gone_bit2 0 0 1	Step5 gone_bit1 0 1	Ster
	Us Us SA	e SAT (LTL only) T Bound: 10 The prop The LTL pro G ! output has been fo Name mode run md1.out md2.out	berty is f perty: und false. A Step	alse	Try to Complete shows the	step 3 gone_rnd1: 0 0 1	Step4 2 gone_bft2 0 0 1 .	Step5 gone_bit1 0 1	Ster 2 gc

Simulator view

		•	Gammana Dea	tertaine direct				x ••	
-			Compass Pro	cotype looi					
Edit View Activities E	Telb								
odel Properties Valida	ation Corre	ctness Performability Safety	FDIR						
roperties	Model	Model							
Name Formula	Checking	Simulation							
	You sele	cted %s as constraints for the sim	nulation.						
	Simulati	on current length is %d.							
	(B) 0.	n Madel Cimulation	utondod by Foult In	instings					
	35 HU	Model e	Actended by Fault In	rections					
	Simula	ition Options:							
	Lengt	h: 10 🗘							
		Circulation							
		50710 0 41 0 17 1							
		Sindacion							
		A simulation exists and it is sho	wn by the following	trace					
		A simulation exists and it is sho	wn by the following	trace					
		A simulation exists and it is sho	wn by the following Step1	trace Step2	Step3	Step4	Step5	Step6	Step7
	Ξ	A simulation exists and it is sho Name sensors.switch	wn by the following Step1	trace Step2	Step3	Step4	Step5	Step6	Step7
	=	A simulation exists and it is sho Name sensors.switch filters.switch	wn by the following Step1 0 0	trace Step2 0	Step3 0	Step4	Step5	Step6 0 0	Step7
	3	A simulation exists and it is sho Name sensors.switch filters.switch sensors.mode	wn by the following Step1 0 Primary	trace Step2 0 Primary	Step3 0 Primary	Step4	Step5 0 0 Backup	Step6 0 Backup	Step7 0 Backup
	1	A simulation exists and it is sho Name sensors.switch filters.switch sensors.mode sensors.sensor1.output	wn by the following Step1 0 0 Primary 1	trace Step2 0 Primary 1	Step3 0 Primary 1	Step4	Step5 0 0 Backup 15	Step6 0 Backup 15	Step7 0 Backup 15
	B	A simulation exists and it is sho Name sensors.switch filters.switch sensors.mode sensors.sensor1.output sensors.sensor1.output	Step1	trace Step2 0 Primary 1 Glitched	Step3 0 Primary 1 OK	Step4 0 Primary 15 Dead	Step5 0 Backup 15 Dead	Step6 0 Backup 15 Dead	Step7 0 Backup 15 Dead
	В	A simulation exists and it is sho Name sensors switch filters.switch sensors.mode sensors.sensor1.output sensors.sensor2.output	Step1 0 Primary 1 OK	trace Step2 0 Primary 1 Glitched 1	Step3 0 Рrimary 1 ОК 1	Step4	Step5 0 Backup 15 Dead 1	Step6 0 Backup 15 Dead 1	Step7 0 Backup 15 Dead
	8	A simulation exists and it is sho Name sensors.switch filters.switch sensors.sensor1.output sensors.sensor1.output sensors.sensor2.output sensors.sensor2.error	Step1 0 Primary 1 OK 1 OK	trace Step2 0 Primary 1 Glitched 1 OK	Step3 0 Ргітату 1 ОК 1 ОК	Step4	Step5 0 Backup 15 Dead 1 0K	Step6 0 Backup 15 Dead 1 Glitched	Step7 0 Backup 15 Dead 1 OK
	E	A simulation exists and it is sho Name sensors switch filters switch sensors.amol output sensors.amol output sensors.amol output sensors.amol output sensors.amol output	wn by the following Step1 0 Primary 1 OK Primary	trace Step2 0 Primary 1 Glitched 1 OK Primary	Step3 0 Primary 1 0K 1 OK Primary	Step4 0 Primary 15 Dead 1 OK Primary	Step5 0 Backup 15 Dead 1 OK Primary	Step6 0 Backup 15 Dead 1 Glitched Primary	Step7 0 Backup 15 Dead 1 OK Primary
	Ξ	A simulation exists and it is sho Name sensors.switch filters.switch sensors.mode sensors.mode sensors.sensor1.output sensors.sensor2.artpor filters.mode filters.mode filters.mode	step1 0 0 Primary 1 OK 1 OK Primary 2	trace Step2 0 Primary 1 Glitched 1 OK Primary 2	Step3 0 Primary 1 OK 1 OK Primary 2	Step4 1 0 Primary 15 Dead 1 OK Primary 2	Step5 0 Backup 15 Dead 1 OK Primary 2	Step6 0 Backup 15 Dead 1 Glitched Primary 2	Step7 0 Backup 15 Dead 1 OK Primary 2
	H	A simulation exists and it is sho Name sensors.switch filters.switch sensors.sensor1.output sensors.sensor2.autput sensors.sensor2.autput filters.filter1.output filters.filter1.error	we by the following Step1 0 0 Primary 1 OK 1 OK Primary 2 OK	trace Step2 0 Primary 1 Glitched 1 OK Primary 2 OK	Step3 0 Primary 1 OK Primary 2 OK	Step4 0 Primary 15 Dead 1 OK Primary 2 OK	Step5 0 Васкир 15 Dead 1 ОК Ргітату 2 ОК	Step6 0 Backup 15 Dead 1 Glitched Primary 2 OK	Step7 0 Backup 15 Dead 1 OK Primary 2 OK
	E	A simulation exists and it is sho Name sensors.switch filters.switch sensors.code sensors.sensor2.output sensors.sensor2.output sensors.sensor2.autput filters.filter1.output filters.filter1.output filters.filter1.output	why the following Step1 0 0 Primary 1 OK Primary 2 OK 2	trace Step2 0 Primary 1 Glitched 1 NK Primary 2 OK 2	Step3 0 Primary 1 OK Primary 2 OK 2 OK	Step4 1 Primary 15 Dead 1 OK Primary 2 OK 2	Step5 0 0 0 Backup 15 Dead 1 OK Primary 2 0K 2 0K	Step6 0 Backup 15 Dead 1 Glitched Primary 2 OK 2	Step7 0 Backup 15 Dead 1 OK Primary 2 OK 2
		A simulation exists and it is sho Name sensors.switch filters.switch sensors.sensor1.output sensors.sensor2.autput sensors.sensor2.autput filters.filter1.autput filters.filter1.autput filters.filter2.autput filters.filter2.autput	wr by the following Step1 0 0 Primary 1 OK Primary 2 OK 2 OK	trace Step2 0 Primary 1 Glitched 1 OK Primary 2 OK 2 OK	Step3 0 0 Primary 1 0K 0K Primary 2 0K 0K 2 0K 2	Step4 0 Primary 15 Dead 1 OK Primary 2 OK 2 OK	Step5 0 0 Backup 15 Dead 1 OK Primary 2 ОК 2 ОК ОК	Step6 0 Backup 15 Dead 1 (Glitched) Primary 2 OK 2 OK	Step7 0 Backup 15 Dead 1 CK Primary 2 OK 2
	E	A simulation exists and it is sho Name sensors.switch filters.switch sensors.mode sensors.ensor2.output sensors.sensor2.output sensors.sensor2.output filters.filter1.output filters.filter1.output filters.filter2.output filters.filter2.output filters.filter2.error value	wn by the following Step1 0 0 Primary 1 0K Primary 2 0K 2 0K 2 0K 2	trace Step2 0 Primary 1 Glitched 1 OK Primary 2 OK 2 OK 2 OK 2	Step3	Step4 1 0 Primary 15 Dead 1 OK Primary 2 OK 2 OK 2	Step5 0 Backup 15 Dead 1 OK Primary 2 OK 2 OK 2	Step6 0 Backup 15 Dead 1 Glitched 2 OK 2 OK 2	Step7 0
	5	A simulation exists and it is sho Name sensors.switch filters.switch sensors.sensor1.output sensors.sensor2.autput sensors.sensor2.autput filters.filter1.output filters.filter1.output filters.filter1.error value mode	wn by the following Step 1 0 0 Primary 1 0K Primary 2 0K 2 0 0K 2 0 0K 2 0K 2 0K 2 0K 2 0 0K 2 0 0 0 0 0 0 0 0 0 0 0 0 0	trace Step2 0 0 Primary 1 Glitched 1 OK Primary 2 OK 2 OK 2ultinitialMode	Step3 0 Primary 1 0K Primary 2 0K 2 0K 2 ultinitialMode	Step4 0 Primary 15 Dead 1 OK Primary 2 OK 2 OK 2 ultinitialMode	Step5 0 Backup 15 Dead 1 OK Primary 2 OK 2 OK 2 ultinitiaMode	Step6 0 Backup 15 Dead 1 Glitched Primary 2 OK 2 OK 2 utlinitiaMode	Step? 0 0 0 Backup 15 Dead 1 OK 2

* 5

Performance view

Overview

2 System Specification

- Behavioural Modeling
- Formal Semantics
- Error Modelling
- Property Specification

3 Analysis Facilities

Industrial Evaluation

Conclusions and Outlook

Case study: Satellite thermal regulation

Challenges:

- Hardware (sensors, heaters) and software (control) co-engineering
- Hybrid behavior (temperatures)
- Dynamic reconfiguration (redundancy)
- State-space explosion

Case study: Satellite FDIR system

Goal

Assess effectiveness of FDIR measures

Model components:

- satellite mode management during transfer-to-orbit phase
- AOCS (Attitude and Orbit Control System) mode management
- abstraction of AOCS equipment (sensors, gyroscope, ...)
- FDIR action sequence

Case study: Satellite FDIR system

Goal

Assess effectiveness of FDIR measures

Model components:

- satellite mode management during transfer-to-orbit phase
- AOCS (Attitude and Orbit Control System) mode management
- abstraction of AOCS equipment (sensors, gyroscope, ...)
- FDIR action sequence

Analysis problems:

- identification of failures leading to a given FDIR level
- identification of failures entailing a system reconfiguration
- impact of reconfiguration on satellite and AOCS mode

Scalability

Case study: Satellite of project

Launches between 2012-2020

Case study: Satellite of project

Launches between 2012-2020

Payload is mission-specific equipment, e.g.:

- telecom transponders,
- navigation signals,
- earth observation telemetry (weather, radiation, salinity).

Case study: Satellite of project

Launches between 2012-2020

Payload is mission-specific equipment, e.g.:

- telecom transponders,
- navigation signals,
- earth observation telemetry (weather, radiation, salinity).

Platform keeps the satellite orbiting in space, consists of:

- attitude & orbital control
- power distribution
- data handling
- communications
- thermal regulation

Verification & validation objectives

- Ensure nominal and degraded conditions are handled correctly by the fault management system.
- Ensure performance and risks are within specified limits.

Verification & validation objectives

- Ensure nominal and degraded conditions are handled correctly by the fault management system.
- Ensure performance and risks are within specified limits.

Model characteristics

- ✓ Functional
- ✓ Probabilistic
- ✓ Real-time
- √ Hybrid

Verification & validation objectives

- Ensure nominal and degraded conditions are handled correctly by the fault management system.
- Ensure performance and risks are within specified limits.

Model characteristics			
✓ Functional	Components:	99	
✓ Probabilistic	Modes:	217	
√ Real-time	Faults:	21	
✓ Hybrid	Recoveries:	9	

Verification & validation objectives

- Ensure nominal and degraded conditions are handled correctly by the fault management system.
- Ensure performance and risks are within specified limits.

Model characteristics			
✓ Functional	Components:	99	
✓ Probabilistic	Modes:	217	
✓ Real-time	Faults:	21	
✓ Hybrid	Recoveries:	9	

State space of nominal behaviour: 48,421,100 states

Verification & validation objectives

- Ensure nominal and degraded conditions are handled correctly by the fault management system.
- Ensure performance and risks are within specified limits.

Model characteristics		
✓ Functional	Components:	99
√ Probabilistic	Modes:	217
√ Real-time	Faults:	21
✓ Hybrid	Recoveries:	9

State space of nominal behaviour: 48,421,100 states

Requirement metrics

Functional properties: 32

Industrial Evaluation

Analysis results

Analysis results

Correctness and (static) fault tree analysis

Setup:	Intel	Xeon	2.33	GHz	machine	with	16	GΒ	RAM.
--------	-------	------	------	-----	---------	------	----	----	------

Analysis	Time
Deadlock checking	173 sec
Model checking "processor alarms only raised on failure"	4 min
Model checking "nominal AOCS thrusters"	102 min
Fault tree analysis "switch to safe modes"	51 min

Analysis results

Correctness and (static) fault tree analysis

Setup: Intel Xeon 2.33 GHz machine with 16 GB RAM.

Analysis	Time
Deadlock checking	173 sec
Model checking "processor alarms only raised on failure"	4 min
Model checking "nominal AOCS thrusters"	102 min
Fault tree analysis "switch to safe modes"	51 min

Setup: AMD Opteron 6172 with 192 GB RAM.

Analysis	Time
Fault detection observables of "processor module"	88 min
Diagnosability of "earth sensors"	> 2.5 days
FMEA table generation	to do
Dynamic fault tree analysis	to do
Performance evaluation	to do

Experiences so far

+ Abstraction level of models is appropriate

mode transition systems, not source code

Experiences so far

- + Abstraction level of models is appropriate
 - mode transition systems, not source code
- + Support of incremental approach to system design
 - start with abstract functional representation
 - refinement without breaking structure of model
 - separation of component interface and implementation
Experiences so far

- + Abstraction level of models is appropriate
 - mode transition systems, not source code
- + Support of incremental approach to system design
 - start with abstract functional representation
 - refinement without breaking structure of model
 - separation of component interface and implementation
- + Valuable feedback from analysis to system designer
 - found several design inconsistencies in satellite case study
 - better understanding of system behaviour under (multiple) failures.
 - Improved safety analysis due to automatic FMEA/FT generation.

Experiences so far

- + Abstraction level of models is appropriate
 - mode transition systems, not source code
- + Support of incremental approach to system design
 - start with abstract functional representation
 - refinement without breaking structure of model
 - separation of component interface and implementation
- + Valuable feedback from analysis to system designer
 - found several design inconsistencies in satellite case study
 - better understanding of system behaviour under (multiple) failures.
 - Improved safety analysis due to automatic FMEA/FT generation.
- No (automatic) link AADL to engineering models (UML, Simulink)
 - integration into engineering tool suite
- Tool set performance on timed and hybrid systems further study

Overview

2 System Specification

- Behavioural Modeling
- Formal Semantics
- Error Modelling
- Property Specification
- 3 Analysis Facilities
- Industrial Evaluation

5 Conclusions and Outlook

Related work

Formal AADL semantics:

- Component-based semantics using BIP
- Arcade: AADL error annex
- GSPN semantics

.

[Sifakis et al., 2008]

[Stoelinga et al., 2007]

[Kanoun et al., 2007]

Related work

Formal AADL semantics:

- Component-based semantics using BIP
- Arcade: AADL error annex
- GSPN semantics

•

[Sifakis et al., 2008]

[Stoelinga et al., 2007]

[Kanoun et al., 2007]

AADL Analysis Tools:

- AADL2BIP tool (simulation, deadlock detection) [Sifakis et al., 2008]
- ADeS simulator
- Real-time scheduling tools

www.axlor.fr

Cheddar, Furness

Achievements:

Joost-Pieter Katoen

Achievements:

Component-based model framework based on AADL

Achievements:

- Component-based model framework based on AADL
- ▶ Novelties: hybrid, error modelling, dynamic reconfigurations, ...

Achievements:

- Component-based model framework based on AADL
- ▶ Novelties: hybrid, error modelling, dynamic reconfigurations, ...
- Automated correctness, safety, and performability analysis

Achievements:

- Component-based model framework based on AADL
- ▶ Novelties: hybrid, error modelling, dynamic reconfigurations, ...
- Automated correctness, safety, and performability analysis
- Industrial evaluation by third-party company showed maturity

In a nutshell:

trustworthy aerospace design := AADL modeling + analysis

Achievements:

- Component-based model framework based on AADL
- ▶ Novelties: hybrid, error modelling, dynamic reconfigurations, ...
- Automated correctness, safety, and performability analysis
- Industrial evaluation by third-party company showed maturity

In a nutshell: trustworthy aerospace design := AADL modeling + analysis

Future and current activities:

- Graphical modelling tool (ESA funded)
- Contribution to AADL standardization
- FMEA reduction, FDIR synthesis, and slicing (ESA funded)
- Compositional model checking (ESA funded)

FMEA reduction

Model	#Classical	#Compact
Thermal regulation (C1)	7	7
Thermal regulation (C2)	67	32
Acquisition (C2)	3	3
Acquisition (C3)	31	4
Command (C1)	1	1
Command (C2)	12	1
Control and Monitoring (C1)	1	1
Control and Monitoring (C2)	12	1
Heating (C1)	1	1
Heating (C2)	13	2
Passive units (C1)	4	4
Passive units (C2)	42	10

Further information

Overview paper

(Yushstein et. al, IEEE SMC-IT 2011)

- AADL formal semantics (Bozzano et. al, Computer J. 2011)
- Slicing of AADL specifications (Odenbrett et. al, NASA FM 2010)
- ► AADL model checker (Bozzano et. al, CAV 2010)
- Our variant of the AADL languages (Bozzano et. al, MEMOCODE 2009)
- Tool download at http://compass.informatik.rwth-aachen.de/