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Extreme dependability!

I They must offer service without interruption for a very long time –
typically years or decades.

I ‘Five nines’ dependability is not sufficient.
I Faults are costly and may severely damage reputations, e.g. Ariane 5.

Challenges

I Rigorous design support and analysis techniques are called for.
I Bugs must be found as early as possible in the design process.
I Check performance and reliability guarantees whenever possible.
I The effect of Fault Diagnosis, Isolation and Recovery (FDIR)

measures must be quantifiable.
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Current weaknesses and limitations

Software is mostly verified in isolation from the target hardware.

Limited support for modeling fault models and degraded modes of
operation.

Distinct modeling formalisms and analysis techniques for different system
aspects.

Limited support for checking timed, hybrid, and probabilistic properties.

No coherent approach to study effectiveness of FDIR 1

1Fault Detection, Identification and Recovery
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Our objective

Develop an integrated system-software co-engineering approach to ensure
completeness and consistency from heterogeneous specification and
analysis techniques.

Main ingredients should be a general-purpose modelling language,
accompanied with a plethora of formal analysis techniques and supported
by powerful software tools.

Current situation
Yes, “formal methods" are applied to aerospace systems, but not in a
coherent manner at the systems engineering level.
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COMPASS project partners

Consortium
I RWTH Aachen University

Software Modeling and Verification
Group

I Fondazione Bruno Kessler
Embedded Systems Group

I Thales Alenia Space
World-wide #1 in satellite systems

Financial support + supervisor

I European Space Agency
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Approach in a nutshell

Design a modeling language based on (core) AADL and its Error Annex.

Equip this modeling language with a formal semantics.

Use specification patterns to ease the specification of system properties.

Support the system-engineering language by powerful model-checking
tools for correctness, safety, performance and dependability analysis

Evaluate their effectiveness by industrial case studies.
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COMPASS phases

1. Project kick-off February 2008

2. Language design

3. Software tool specification + software design document

4. Formal semantics October 2008

5. Prototype tool implementation April 2009

6. Prototype evaluation

7. Final tool implementation December 2009

8. Final tool evaluation March 2010

9. Project extension until March 2011

10. New projects (NPI, CGM) until December 2011

Total budget: ≈ 750 kEuro; at peak times ≈ 10 programmers involved
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The industry standard AADL

• 1989 MetaH

• 1998 SAE AS-2C

• 2004 AADL 1.0
• 2006 Error Annex 1.0

• 2009 AADL 2.0
• 2010 Error Annex 2.0

Paradigm

I Architecture-based and
model-driven top-down and
bottom-up engineering

I Real-time and performance critical
distributed systems

I Complements component-based
product-line development
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AADL example: redundant power system

Redundant power system
I Contains two batteries
I Power switches from primary to

backup mode (and back) when
batt1 (batt2) is empty

We shall show:
I hybrid behaviour of the batteries
I composition of the power system
I formalisation to automata
I semantics as transition systems
I interweaving of errors
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Modelling a battery in AADL

Component type and implementation:

device type Battery

features
empty: out event port;
voltage: out data port real initially 6.0;

end Battery;
device implementation Battery.Imp

subcomponents
energy: data continuous initially 100.0;

modes
charged: activation mode

while energy’=-0.02 and energy>=20.0;
depleted: mode

while energy’=-0.03;
transitions

charged -[]-> charged;
charged -[empty]-> depleted;
depleted -[]-> depleted;

end Battery.Imp;
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Adding modes behavior:
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Modelling a battery in AADL

Adding hybrid behavior:

device type Battery
features

empty: out event port;
voltage: out data port real initially 6.0;

end Battery;

[System] Power.Imp

Nominal

pr imary

b a c k u p

b a t t 1 . e m p t yb a t t 2 . e m p t y

pr imary b a c k u p
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Nominal
Error Data
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ene rgy ‘  =  -0 .02  
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 vo l t age  :=  f ( ene rgy)

d e p l e t e d

ene rgy ‘  =  -0 .03
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vo l t age
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device implementation Battery.Imp
subcomponents

energy: data continuous initially 100.0;
modes

charged: activation mode
while energy’=-0.02 and energy>=20.0;

depleted: mode
while energy’=-0.03;

transitions
charged -[then voltage:=energy/50.0+4.0]-> charged;
charged -[empty when energy<=20.0]-> depleted;
depleted -[then voltage:=energy/50.0+4.0]-> depleted;

end Battery.Imp;
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Modeling a redundant power system in AADL
Power system with battery subcomponents:

system Power
features

voltage: out data port real;
end Power;

system implementation Power.Imp
subcomponents

batt1: device Battery.Imp
batt2: device Battery.Imp

connections
data port batt1.voltage -> voltage in modes (primary);
data port batt2.voltage -> voltage in modes (backup);

modes
primary: initial mode;
backup: mode;

transitions
primary -[batt1.empty]-> backup;
backup -[batt2.empty]-> primary;

end Power.Imp;
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Modeling a redundant power system in AADL
Adding dynamic reconfiguration:

system Power
features

voltage: out data port real;
end Power;

system implementation Power.Imp
subcomponents

batt1: device Battery.Imp in modes (primary);
batt2: device Battery.Imp in modes (backup);

connections
data port batt1.voltage -> voltage in modes (primary);
data port batt2.voltage -> voltage in modes (backup);

modes
primary: initial mode;
backup: mode;

transitions
primary -[batt1.empty]-> backup;
backup -[batt2.empty]-> primary;

end Power.Imp;
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Modeling a redundant power system in AADL
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Deviations from AADL
Omissions
Some advanced features of AADL such as property associations,
component refinement, prototypes, event data ports, in out ports, ...

Simplifications
(multi-way) synchronous communication (rather than asynchronous
channel communication).

Extensions
I default values for data elements
I support for mode/error state history (upon component re-activation)
I hybridity, i.e., mode invariants, trajectory equations
I specification of observability requirements
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Event-data automata
Definition (Event-data automaton)

An event-data automaton (EDA) is a tuple
A = (M,m0,X , v0, ι,E , −→ )

with
I M finite set of modes

I m0 ∈ M initial mode
I X = IX ] OX ] LX finite set of input/output/local variables
I V := {v | v : X → . . .} valuations

I v0 ∈ V initial valuation
I ι : M → (V → B) mode invariants (where ι(m0, v0) = true)
I E = IE ] OE finite set of input/output events
I −→ ⊆ M × Eτ︸︷︷︸

trigger

× (V → B)︸ ︷︷ ︸
guard

× (V → V )︸ ︷︷ ︸
effect

×M

(mode) transition relation (where Eτ := E ∪ {τ})
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Semantics of an AADL component

I AADL modes/invariants/transitions
 EDA modes/invariants/transitions

I Incoming/outgoing data ports  input/output variables
I Data subcomponents  local variables
I Incoming/outgoing event ports  input/output events

Example (Battery)

I M = {charged, depleted}, m0 = charged

I IX = ∅, OX = {voltage}
I LX = {energy}
I IE = ∅, OE = {empty}
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Operational semantics of EDA
I States are pairs: a mode and a variable valuation
I Transitions: timed or internal or event-labeled

Example (Battery)
〈mode = charged, energy = 100.0, voltage = 6.0〉

↓ 30.0
〈mode = charged, energy = 40.0, voltage = 6.0〉

↓ τ〈voltage:=...〉
〈mode = charged, energy = 40.0, voltage = 4.8〉

↓ 10.0
〈mode = charged, energy = 20.0, voltage = 4.8〉

↓ τ〈voltage:=...〉
〈mode = charged, energy = 20.0, voltage = 4.4〉

↓ empty
〈mode = depleted, energy = 20.0, voltage = 4.4〉

↓ · · ·
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I Transitions: timed or internal or event-labeled

Example (Battery)
〈mode = charged, energy = 100.0, voltage = 6.0〉

↓ 30.0
〈mode = charged, energy = 40.0, voltage = 6.0〉

↓ τ〈voltage:=...〉
〈mode = charged, energy = 40.0, voltage = 4.8〉

↓ 10.0
〈mode = charged, energy = 20.0, voltage = 4.8〉

↓ τ〈voltage:=...〉
〈mode = charged, energy = 20.0, voltage = 4.4〉

↓ empty
〈mode = depleted, energy = 20.0, voltage = 4.4〉

↓ · · ·
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Networks of event-data automata
Dynamic reconfiguration
=⇒ component activity and port connections mode dependent

Definition (Networks of Event-Data Automata)

A network of event-data automata (NEDA) is a tuple

N = ((Ai )i∈[n],α,EC ,DC)

with n > 1, [n] := {1, . . . , n}, and
I each Ai an EDA Ai = (Mi ,mi

0,Xi , v i
0, ιi ,Ei , −→ i )

I M :=
∏n

i=1 Mi set of global modes
I α : M → 2[n] activation mapping
I EC : M → ({i .e | i ∈ [n], e ∈ Ei})2 event connection mapping
I DC : M → ({i .x | i ∈ [n], x ∈ Xi})2 data connection mapping
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Semantics of an entire AADL model

I AADL subcomponent declarations  activation mapping:
I root component always active
I c active and in mode m, subcomponent c ′ of c activated in m

=⇒ c ′ active

Example (Power System)

For Power/Battery1/Battery2 (m1,m2 ∈ {charged, depleted}):
I α(primary,m1,m2) = {1, 2}

α(backup,m1,m2) = {1, 3}

Joost-Pieter Katoen 22/48



Towards trustworthy aerospace systems System Specification

Semantics of an entire AADL model
I AADL event/data connections  EC/DC mappings:

follow all end-to-end chains of port connections

c’ out−to−in

root

c

out−to−out 

in−to−in

Example (Power System)

For Power/Battery1/Battery2 (m1,m2 ∈ {charged, depleted}):
I EC(primary,m1,m2) = {(2.empty, 1.batt1.empty)}

EC(backup,m1,m2) = {(3.empty, 1.batt2.empty)}
DC(primary,m1,m2) = {(2.voltage, 1.voltage)}
DC(backup,m1,m2) = {(3.voltage, 1.voltage)}
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Operational semantics of networks of EDAs
I States := (M1 × V1)× . . .× (Mn × Vn)

I Transitions determined by active EDAs:
1. Perform local transitions:

I timed local transition in all EDAs or
I internal transition in EDA or
I multi-way event communication from EDA to ≥ 1 connected EDAs

2. Initialize (re-)activated subcomponents
3. Establish consistency w.r.t. DC (copy source → target data port)

Example (Power system)
〈m=primary, v=6.0〉 〈m=charged, e=100.0, v=6.0〉 〈m=charged, e=100.0, v=6.0〉

⇓ 40.0
〈m=primary, v=6.0〉 〈m=charged, e=20.0, v=6.0〉 〈m=charged, e=100.0, v=6.0〉

⇓ τ〈voltage:=...〉
〈m=primary, v=4.4〉 〈m=charged, e=20.0, v=4.4〉 〈m=charged, e=100.0, v=6.0〉

⇓ τ〈empty〉
〈m=backup, v=6.0〉 〈m=depleted, e=20.0, v=4.4〉 〈m=charged, e=100.0, v=6.0〉

⇓ 40.0
〈m=backup, v=6.0〉 〈m=depleted, e=20.0, v=4.4〉 〈m=charged, e=20.0, v=6.0〉

⇓ · · ·
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Error modelling

error model BatteryFailure
features

ok: initial state;
dead: error state;
batteryDied: out error propagation;

end BatteryFailure ;

error model implementation BatteryFailure .Imp
events

fault: error event occurrence poisson 0.01;
transitions

ok -[fault]-> dead;
dead -[batteryDied]-> dead;

end BatteryFailure .Imp;
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Error modelling
error model BatteryFailure

features
ok: initial state;
dead: error state;
batteryDied: out error propagation;

end BatteryFailure ;

error model implementation BatteryFailure .Imp
events

fault: error event occurrence poisson 0.01;
transitions

ok -[fault]-> dead;
dead -[batteryDied]-> dead;

end BatteryFailure .Imp;

Repair
reset events (not in example) can be sent from nominal to error model of
same component to attempt to repair the occurred fault.
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Error modelling
error model BatteryFailure

features
ok: initial state;
dead: error state;
batteryDied: out error propagation;

end BatteryFailure ;

error model implementation BatteryFailure .Imp
events

fault: error event occurrence poisson 0.01;
transitions

ok -[fault]-> dead;
dead -[batteryDied]-> dead;

end BatteryFailure .Imp;

Fault injection
An error model does not influence the nominal behaviour unless they are
linked through fault injection.
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Error modelling
error model BatteryFailure

features
ok: initial state;
dead: error state;
batteryDied: out error propagation;

end BatteryFailure ;

error model implementation BatteryFailure .Imp
events

fault: error event occurrence poisson 0.01;
transitions

ok -[fault]-> dead;
dead -[batteryDied]-> dead;

end BatteryFailure .Imp;

Fault injection
A fault injection (s, d , a) means that on entering error state s, the
assignment d := a is performed, where d is a data subcomponent
and a the fault effect.
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Error modelling

error model BatteryFailure
features

ok: initial state;
dead: error state;
batteryDied: out error propagation;

end BatteryFailure ;

error model implementation BatteryFailure .Imp
events

fault: error event occurrence poisson 0.01;
transitions

ok -[fault]-> dead;
dead -[batteryDied]-> dead;

end BatteryFailure .Imp;

Fault injection example
In error state dead, voltage:=0
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Model extension

Nominal model + error model + fault injections = extended model
I Modes are pairs of nominal modes and error model states

I Starting mode = (the original starting mode, the starting error state)
I Set of event ports +:= the error propagations
I Event port connections +:= propagation port connections
I Transition relation := all possible interleavings and interactions

between nominal and error model, taking failure effects into account
I Other elements (e.g., mode invariants) are unaffected

Probabilistic error transitions
As an error model has probabilistic transitions, our semantical model has
to be equipped with such transitions.
This yields interactive Markov chains := LTS + Markov chains.
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Battery component
Nominal specification:

device type Battery
features

empty: out event port;
voltage: out data port real initially 6.0;

batteryDied: out event port;

end Battery;

device implementation Battery.Imp
subcomponents

energy: data continuous initially 100.0;
modes

charged: activation mode while ...;

charged#ok: activation mode while ...;

depleted: mode while ...;

depleted#ok, charged#dead, depleted#dead: mode while ...;

transitions
charged -[then voltage:=...]-> charged;

charged#ok -[then voltage:=...]-> charged#ok;

charged -[empty when energy<=20.0]-> depleted;

charged#ok -[empty when energy<=20.0]-> depleted#ok;

depleted -[then voltage:=...]-> depleted;

depleted#ok -[then voltage:=...]-> depleted#ok;
charged#ok -[prob 0.001 then voltage:=0]-> charged#dead;
depleted#ok -[prob 0.001 then voltage:=0]-> depleted#dead;
charged#dead -[then voltage:=0]-> charged#dead;
charged#dead -[empty when energy<=20.0]-> depleted#dead;
depleted#dead -[then voltage:=0]-> depleted#dead;
depleted#dead -[batteryDied]-> depleted#dead;

end Battery.Imp;Joost-Pieter Katoen 26/48
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Battery component after model extension
Product construction for modes:

device type Battery
features

empty: out event port;
voltage: out data port real initially 6.0;

batteryDied: out event port;

end Battery;

device implementation Battery.Imp
subcomponents

energy: data continuous initially 100.0;
modes

charged#ok: activation mode while ...;
depleted#ok, charged#dead, depleted#dead: mode while ...;

transitions
charged -[then voltage:=...]-> charged;

charged#ok -[then voltage:=...]-> charged#ok;

charged -[empty when energy<=20.0]-> depleted;

charged#ok -[empty when energy<=20.0]-> depleted#ok;

depleted -[then voltage:=...]-> depleted;

depleted#ok -[then voltage:=...]-> depleted#ok;
charged#ok -[prob 0.001 then voltage:=0]-> charged#dead;
depleted#ok -[prob 0.001 then voltage:=0]-> depleted#dead;
charged#dead -[then voltage:=0]-> charged#dead;
charged#dead -[empty when energy<=20.0]-> depleted#dead;
depleted#dead -[then voltage:=0]-> depleted#dead;
depleted#dead -[batteryDied]-> depleted#dead;

end Battery.Imp;Joost-Pieter Katoen 26/48
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Battery component after model extension
Integrate nominal transitions:

device type Battery
features

empty: out event port;
voltage: out data port real initially 6.0;

batteryDied: out event port;

end Battery;

device implementation Battery.Imp
subcomponents

energy: data continuous initially 100.0;
modes

charged#ok: activation mode while ...;
depleted#ok, charged#dead, depleted#dead: mode while ...;

transitions
charged#ok -[then voltage:=...]-> charged#ok;
charged#ok -[empty when energy<=20.0]-> depleted#ok;
depleted#ok -[then voltage:=...]-> depleted#ok;

charged#ok -[prob 0.001 then voltage:=0]-> charged#dead;
depleted#ok -[prob 0.001 then voltage:=0]-> depleted#dead;
charged#dead -[then voltage:=0]-> charged#dead;
charged#dead -[empty when energy<=20.0]-> depleted#dead;
depleted#dead -[then voltage:=0]-> depleted#dead;
depleted#dead -[batteryDied]-> depleted#dead;

end Battery.Imp;Joost-Pieter Katoen 26/48
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Battery component after model extension
Fault injection:

device type Battery
features

empty: out event port;
voltage: out data port real initially 6.0;

batteryDied: out event port;

end Battery;

device implementation Battery.Imp
subcomponents

energy: data continuous initially 100.0;
modes

charged#ok: activation mode while ...;
depleted#ok, charged#dead, depleted#dead: mode while ...;

transitions
charged#ok -[then voltage:=...]-> charged#ok;
charged#ok -[empty when energy<=20.0]-> depleted#ok;
depleted#ok -[then voltage:=...]-> depleted#ok;
charged#ok -[prob 0.001 then voltage:=0]-> charged#dead;
depleted#ok -[prob 0.001 then voltage:=0]-> depleted#dead;

charged#dead -[then voltage:=0]-> charged#dead;
charged#dead -[empty when energy<=20.0]-> depleted#dead;
depleted#dead -[then voltage:=0]-> depleted#dead;
depleted#dead -[batteryDied]-> depleted#dead;

end Battery.Imp;Joost-Pieter Katoen 26/48
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Battery component after model extension
Nominal transitions with fault effects:

device type Battery
features

empty: out event port;
voltage: out data port real initially 6.0;

batteryDied: out event port;

end Battery;

device implementation Battery.Imp
subcomponents

energy: data continuous initially 100.0;
modes

charged#ok: activation mode while ...;
depleted#ok, charged#dead, depleted#dead: mode while ...;

transitions
charged#ok -[then voltage:=...]-> charged#ok;
charged#ok -[empty when energy<=20.0]-> depleted#ok;
depleted#ok -[then voltage:=...]-> depleted#ok;
charged#ok -[prob 0.001 then voltage:=0]-> charged#dead;
depleted#ok -[prob 0.001 then voltage:=0]-> depleted#dead;
charged#dead -[then voltage:=0]-> charged#dead;
charged#dead -[empty when energy<=20.0]-> depleted#dead;
depleted#dead -[then voltage:=0]-> depleted#dead;

depleted#dead -[batteryDied]-> depleted#dead;

end Battery.Imp;Joost-Pieter Katoen 26/48
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Battery component after model extension
Add error propagations:

device type Battery
features

empty: out event port;
voltage: out data port real initially 6.0;
batteryDied: out event port;

end Battery;

device implementation Battery.Imp
subcomponents

energy: data continuous initially 100.0;
modes

charged#ok: activation mode while ...;
depleted#ok, charged#dead, depleted#dead: mode while ...;

transitions
charged#ok -[then voltage:=...]-> charged#ok;
charged#ok -[empty when energy<=20.0]-> depleted#ok;
depleted#ok -[then voltage:=...]-> depleted#ok;
charged#ok -[prob 0.001 then voltage:=0]-> charged#dead;
depleted#ok -[prob 0.001 then voltage:=0]-> depleted#dead;
charged#dead -[then voltage:=0]-> charged#dead;
charged#dead -[empty when energy<=20.0]-> depleted#dead;
depleted#dead -[then voltage:=0]-> depleted#dead;
depleted#dead -[batteryDied]-> depleted#dead;

end Battery.Imp;Joost-Pieter Katoen 26/48
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The complete power system model

[System] Power.Imp

Nominal

pr imary

b a c k u p

b a t t 1 . e m p t yb a t t 2 . e m p t y
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Specifying observability
I Specification of observables for diagnosability analysis

I for outgoing data ports of type bool

I Example:
system PowerSystem

features
voltage : out data port real;
alarm: out data port bool initially false observable;

end PowerSystem ;

system implementation PowerSystem .Imp
subcomponents

pow: system Power.Imp;
connections

data port pow. voltage -> voltage ;
modes

normal : initial mode;
critical : mode;

transitions
normal -[when voltage <4.5 then alarm:=true]-> critical ;
critical -[when voltage >5.5 then alarm:=false]-> normal ;

end PowerSystem .Imp;
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Property specification: Patterns, no formulas!

Examples

I The system shall have a behaviour where with probability higher than
p it is the case that Φ holds continously within time bound [t1, t2].

I The system shall have a behaviour where Φ globally holds.

Implemented pattern systems

Formalism Intended use Authors
CTL, LTL functional properties [Dwyer et al., 1999]
MTL, TCTL real-time properties [Konrad & Cheng, 2005]
PCTL, CSL probabilistic properties [Grunske, 2008]
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Property specification: Patterns, no formulas!

Examples

I The system shall have a behaviour where with probability higher than
0.98 it is the case that voltage > 80 holds continously within time
bound [0, 10].
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Types of analysis

1. Validation
I check logical consistency of logical specification

2. Model checking
I property patterns, BMC, BDD-based MC, SMT for hybrid

3. Safety and dependability
I FMEA (impact fault modes on events), dynamic FTA

4. Diagnosability
I FDIR

5. Performance evaluation
I using probabilistic model checking
I effective model reduction techniques
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Tool components
NuSMV

I Symbolic LTL and CTL model checker
I BDD- and SAT-based model checking
I Counterexample generation

RAT

I Requirements analyser
I Checks logical consistency

FSAP

I Safety analyser
I Fault-tree analysis

MRMC

I Model checker for MRMs
I Logics: PCTL and CSL (+rewards)
I Numerical + DES engine
I Bisimulation minimisation

SigRef

I (MT)BDD bisimulation minimisation
I Models: Markov chains
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Tool architecture
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Model checking view
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Simulator view
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Performance view
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Case study: Satellite thermal regulation

Challenges:
I Hardware (sensors, heaters) and software (control) co-engineering
I Hybrid behavior (temperatures)
I Dynamic reconfiguration (redundancy)
I State-space explosion
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Case study: Satellite FDIR system
Goal
Assess effectiveness of FDIR measures

Model components:

I satellite mode management during transfer-to-orbit phase
I AOCS (Attitude and Orbit Control System) mode management
I abstraction of AOCS equipment (sensors, gyroscope, ...)
I FDIR action sequence

Analysis problems:

I identification of failures leading to a given FDIR level
I identification of failures entailing a system reconfiguration
I impact of reconfiguration on satellite and AOCS mode
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Scalability
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Case study: Satellite of project kannietzeggen
Launches between 2012-2020

Payload

Platform

Satellite Payload is mission-specific
equipment, e.g.:

I telecom transponders,
I navigation signals,
I earth observation telemetry

(weather, radiation, salinity).

Platform keeps the satellite orbiting
in space, consists of:

I attitude & orbital control
I power distribution
I data handling
I communications
I thermal regulation
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AADL model of satellite platform
Verification & validation objectives

I Ensure nominal and degraded conditions are handled correctly by the
fault management system.

I Ensure performance and risks are within specified limits.

Model characteristics
X Functional
X Probabilistic
X Real-time
X Hybrid

Components: 99
Modes: 217
Faults: 21
Recoveries: 9

State space of nominal behaviour: 48,421,100 states

Requirement metrics

I Functional properties: 32
I Probabilistic: 2
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Analysis results

Correctness and (static) fault tree analysis

Setup: Intel Xeon 2.33 GHz machine with 16 GB RAM.
Analysis Time
Deadlock checking 173 sec
Model checking “processor alarms only raised on failure” 4 min
Model checking “nominal AOCS thrusters” 102 min
Fault tree analysis “switch to safe modes” 51 min

Setup: AMD Opteron 6172 with 192 GB RAM.
Analysis Time
Fault detection observables of “processor module” 88 min
Diagnosability of “earth sensors” > 2.5 days
FMEA table generation to do
Dynamic fault tree analysis to do
Performance evaluation to do
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Experiences so far

+ Abstraction level of models is appropriate
I mode transition systems, not source code

+ Support of incremental approach to system design
I start with abstract functional representation
I refinement without breaking structure of model
I separation of component interface and implementation

+ Valuable feedback from analysis to system designer
I found several design inconsistencies in satellite case study
I better understanding of system behaviour under (multiple) failures.
I Improved safety analysis due to automatic FMEA/FT generation.

− No (automatic) link AADL to engineering models (UML, Simulink)
I integration into engineering tool suite

− Tool set performance on timed and hybrid systems further study
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Related work

Formal AADL semantics:
I Component-based semantics using BIP [Sifakis et al., 2008]
I Arcade: AADL error annex [Stoelinga et al., 2007]
I GSPN semantics [Kanoun et al., 2007]
I . . . . . .

AADL Analysis Tools:

I AADL2BIP tool (simulation, deadlock detection) [Sifakis et al., 2008]
I ADeS simulator www.axlor.fr
I Real-time scheduling tools Cheddar, Furness
I . . . . . .
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Epilogue
Achievements:

I Component-based model framework based on AADL
I Novelties: hybrid, error modelling, dynamic reconfigurations, . . .
I Automated correctness, safety, and performability analysis
I Industrial evaluation by third-party company showed maturity

In a nutshell: trustworthy aerospace design := AADL modeling + analysis

Future and current activities:
I Graphical modelling tool (ESA funded)
I Contribution to AADL standardization
I FMEA reduction, FDIR synthesis, and slicing (ESA funded)
I Compositional model checking (ESA funded)
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FMEA reduction
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Further information

I Overview paper (Yushstein et. al, IEEE SMC-IT 2011)

I AADL formal semantics (Bozzano et. al, Computer J. 2011)

I Slicing of AADL specifications (Odenbrett et. al, NASA FM 2010)

I AADL model checker (Bozzano et. al, CAV 2010)

I Our variant of the AADL languages (Bozzano et. al, MEMOCODE 2009)

I Tool download at http://compass.informatik.rwth-aachen.de/
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